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Session Scope 
•  What this will cover 

–  Very rudimentary SUGGAR++ operation 
•  What will not be covered 

–  All the useful stuff that Ralph Noack would teach you 
–  GVIZ (Ralph’s own viewer for overset grid assembly - useful for 

debugging/assessing hole cutting) 
•  What should you already be familiar with 

–  Basic concept of overset meshes 
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Introduction 
•  Background  

–  Use of overset grids in FUN3D requires SUGGAR++ 
•  Disclaimer: I am not a SUGGAR++ expert - just a user for limited 

applications; this presentation may contain factual errors or other 
misinformation 

•  Compatibility 
–  FUN3D requires both DiRTlib and SUGGAR++ codes from Celeritas 

http://www.celeritassimtech.com 
–  Grid formats: VGRID, AFLR3, FieldView (FV) 

•  Status 
–  Overset simulations done with FUN3D and SUGGAR++ on a 

frequent basis, primarily for rotorcraft applications. 
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SUGGAR++ Documentation 
•  User’s Guide: doc/UsersGuide/UsersGuide.pdf 

–  Documents list of input elements (the rules, not much of  the “why”) 
–  Documents command-line options for SUGGAR++ 

•  Programmer’s Guide: doc/ProgrammersGuide/ProgrammersGuide.pdf 
–  Compilation 
–  How to integrate libSUGGAR++ into a flow solver 

•  Ralph Noack and Dave Boger provided training at the April 2010 
FUN3D Training Session 
–  Much of the material here is a distillation of the April 2010 slides - but 

they had a full day to cover this 
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Nomenclature (1/4) 
•  SUGGAR++: Structured, Unstructured, Generalized overset Grid 
AssembleR  
–   PEGASUS-like capability for general grids 
–  Stand-alone version plus library version to call within a flow solver 

•  DiRTlib: Donor interpolation/Receptor Transaction library - used by flow 
solver to handle data provided by SUGGAR++; no user input (just compile 
and link to flow solver) 

•  Component Grid 
–  “Independently” generated grid for one piece of the configuration 
–  Up to you to create these 

•  Composite Grid 
–  An assembly of component grids 
–  Created by SUGGAR++ based on your input 
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Nomenclature (2/4) 
•  Overset grid point classification 

–  In or Active: flow solver updates these points by solving the governing 
equations at these locations 

–  Out or Hole: flow solver need not update these points as they have been 
removed from the domain 
•  In practice, especially for moving grids, the flow solver fills in data at 

these points by averaging neighboring points - done so that as points 
move from “out” to “in”, they have “reasonable” data 

–  Fringe: these points are updated by interpolation from “in” points; fringe 
points border a hole (inner fringe) or lie along an outer boundary (outer 
fringe) 

–  Donor: the “in” points that supply data to fringe points 
–  Orphan: fringe points for which too few or no donor points can be found; 

undesirable; solver fills in data at these points by averaging solution at 
neighboring points 
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Nomenclature (3/4) 
•  Flow solver point classification - example 
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Hole - Blue Dots 

Outer Fringe - Red Dots 

Inner Fringe - Black Dots 
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Nomenclature (4/4) 
•  DCI file 

–   Domain Connectivity Information file 
–  Created by SUGGAR++; contains information about point classifications 

(hole, fringe, etc) for points in composite mesh, plus interpolation stencil 
data 

–  Calls to DiRTlib within FUN3D read the DCI file and utilize the data 
within to update the solution at fringe points via interpolation from donor 
points 

–  If grid is static, only need one DCI file 
–  If grid is dynamic, must either have pre-computed DCI files available for 

the grid positions at each time step, or utilize libsuggar calls within 
FUN3D to compute DCI data “on the fly” (separate presentation) 
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XML Basics (1/2) 
•  SUGGAR++ input is based on XML 

–  eXtensible Markup Language (HTML-like, but not web centric) 
–  XML element is enclosed in a tag “< >” , with corresponding end tag 
<body> … </body> (start and end can also span multiple lines)  

–  Elements can have attributes/data: <body name=“wing”>  
–  Elements can have an implicit end tag; elements can be empty - no 

attributes: <dynamic/> 
–  XML elements can be embedded in other XML elements to create 

parent-child relationships ( wing and store are children of aircraft) 
<body name=“aircraft”> 

  <body name=“wing”> 

  </body> 

  <body name=“store”> 

  </body> 

</body> 
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XML Basics (2/2) 
•  Element attributes are name/value pairs associated with an element 

–  Always in the start tag, value must be in quotes (single or double) 
<body name=‘blade_1’> … </body> 

<translate axis=“x” value=“1.0e0”/> 
•  Comments start with <!-- and end with --> and cannot be within a tag 
<!-- <body name=“aircraft”/> -->    Correct 
<body <!-- name=“aircraft” --> />   Incorrect 

•  XML syntax must be precise: xmllint is on most(?) systems and can be 
used to check XML syntax before using SUGGAR++ 
–  Usage: xmllint myfile.xml 
–  If syntax is OK, will simply echo XML file to screen; otherwise it reports 

the error 
•  Indentation helps keep XML input readable; xmllint can help here too 

–  Usage: xmllint -format my_messy_file.xml > my_neat_file.xml 
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Hole-Cutting: Hierarchy 
•  Parent-Child hierarchy established in XML file minimizes additional input to 

control hole cutting 
•  Basic rule: siblings cut each other 

–  Geometry in one body (including all children) cut all grids in a sibling 
body (including all children); Aircraft cuts hole in Store and vice versa 
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Hole-Cutting: SUGGAR vs SUGGAR++  
•  Older SUGGAR code relied (primarily) on Octree hole cutting - uses 

Cartesian representation of geometry; hole cutting based on a query 
approach: Is this point inside (the Cartesian representation of) the body? 
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•  In my experience, the Octree hole cutting approach often needs a lot of 
tweaking beyond the default behavior 

•  Newer SUGGAR++ code relies (primarily) on a direct hole cutting approach: 
Find intersections of geometry and grid; requires watertight geometry 

•  In my experience very little tweaking has been required with SUGGAR++ 
•  SUGGAR++ supports the older Octree approach too; other hole-cutting 

options are available but are beyond the scope here 
•  There are pros and cons to any approach…  
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Hole Cutting: Overlap Minimization 
•  Solution quality usually improved by reducing amount of overlap 
•  Goal is to have donors and receptors of similar size 
•  Enabled by element <minimize_overlap> 
•  For moving grids: <minimize_overlap keep_inner_fringe=“yes”/>  

–  Instead of blanking out points removed in overlap minimization, keeps 
them as fringes so they are interpolated rather than averaged - 
presumably better for when these points later emerge from the hole 
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Building Up A SUGGAR++ Input File (1/9) 
•  <global> element serves as the root (parent) element for every    

SUGGAR++ input file: first line in file is <global> and last line is            
</global> 

•  Child elements of <global> specify various global parameters, and the 
body hierarchy 

•  So on a high level an input file for an aircraft composed of a wing and a 
store would look something like: 
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<global> 
  <!-- global parameters here --> 
  <body name=“aircraft”> 

    <body name=“wing”> 
      <!-- wing parameters here --> 
    </body> 
    <body name=“store”> 
      <!-- store parameters here --> 
    </body>     

  </body> 

</global> 
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Building Up A SUGGAR++ Input File (2/9) 
•  Common child elements of <global> (see documentation for more info) 

–  <donor_quality value="0.9”/> (lower stencil quality standard to 
reduce number of orphans) 

–  <minimize_overlap keep_inner_fringe=“yes”/> 
–  <output> (governs output of composite mesh and DCI file) 
–  Principal children of <output> 

•  <composite_grid filename=“file” style=“style”/> 
•  <domain_connectivity filename=“file” style=“style”/> 

–  <composite_grid/> style attributes compatible with FUN3D: 
•  “unsorted_vgrid_set”, “fvuns”, “aflr3”, “ugrid” 
•  Note: “vgrid_set” is not valid output option for node-centered 

grids (FUN3D is node centered) 
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Building Up A SUGGAR++ Input File (3/9) 
•  <body> element can be child of <global> or another <body>  

–  Required attribute is name=“body_name” 
•  Common child elements of <body> (see documentation for more info) 

–  <volume_grid name=”wing” filename=“Grids/wing” 
style=“vgrid_set”/> (associates a volume grid with a body) 

–  <dynamic> (declares a body as moving; also determines how the  
element  <transform> is handled) 

–  <transform> (to manipulate body: scale, rotate, translate, etc.) 
•  If <transform> is child of <body>, transform is “static” - input 

grid coordinates are actually altered by the transform specified 
–  Use to move component grids into place for composite mesh 

•  If <transform> is child of <dynamic>, transform is “dynamic” - 
input grid coordinates are not altered by the transform; the transform 
is only used internally to compute overset data 

–  Use to specify grid motion from static position 
FUN3D Training Workshop 
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Building Up A SUGGAR++ Input File (4/9) 
•  Subtle (important) effect of <dynamic> tag: 

–  Flags the associated grid as dynamic in the DCI file 
–  FUN3D will need this info up front for dynamic grid simulations 

•  When setting up input file to generate composite mesh / initial DCI file: 
–  Add a “self-terminating” <dynamic/> child to any body that will 

subsequently be in motion: 
   <body name="store"> 
     <dynamic/> 
     <transform> 
       <translate axis="x" value="  7.6520E-01"/> 
     </transform> 
   </body>  

–  Because the <dynamic/> element self terminates, <transform>   
is not a child of it, and the usual static transform is applied to position 
component “store” in the composite mesh 
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Building Up A SUGGAR++ Input File (5/9) 
•   Children of <transform>: 

–  <translate>  
–  <rotate> (used to rotate about x, y, or z) 
–  <rotate_about_v> (used to rotate about arbitrary vector axis ) 
–  <scale>  
   <body name="store"> 
     <dynamic/> 
     <transform> 
       <translate axis="x" value="  7.6520E-01"/> 
     </transform> 
   </body>  

–  The order of transforms is important; transforms applied in order 
specified in the input file 

•  Refer to documentation for complete rules about which elements are 
allowed as children, which are allowed as parent, allowable attributes, etc. 
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Building Up A SUGGAR++ Input File (6/9) 
•   More complex example of <transform> from rotorcraft application 

<body name="rotor1_blade2"> 
  <dynamic/> 

    <transform> 
      <translate axis="x" value="  7.6520E-01"/> 

      <translate axis="y" value="  0.0000E+00"/> 

      <translate axis="z" value="  7.9600E-01"/> 
      <rotate_about_v axis_vector="0.0E+00,  1.0E+00, 0.0E+00" value="0.0E+00”         

originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/> 
      <rotate_about_v axis_vector="1.0E+00,  0.0E+00, 0.0E+00" value="0.0E+00" 

originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/> 

      <rotate_about_v axis_vector="0.0E+00,  0.0E+00, 1.0E+00" value="0.0E+00" 
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/> 

      <rotate_about_v axis_vector="0.0E+00, -1.0E+00, 0.0E+00" value="0.0E+00" 
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/> 

      <rotate_about_v axis_vector="0.0E+00,  0.0E+00, 1.0E+00" value="9.0E+01" 
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/> 

    </transform> 

  <volume_grid name="rotor_w_cutout_1_correct_pitch" style="vgrid_set" 
filename="rotor_w_cutout_1_correct_pitch" format="unformatted" 
precision="double"> 

  </volume_grid> 
</body> 
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Building Up A SUGGAR++ Input File (7/9) 
•  Boundary conditions 

–  SUGGAR++ needs to know some boundary condition information, e.g. 
which are the solid (body) boundaries, which outer boundaries need to 
be interpolated from other grids 
•  SUGGAR++ input has provision for specifying the required SUGGAR

++ BC’s via XML elements 
•  An alternative is to provide SUGGAR++ with a separate file with the 

BC data 
–  I strongly recommend the first approach - set the BC’s via XML, since 

the SUGGAR++ BC files are not required, and if you move things 
around and forget the BC files, SUGGAR++ will run with defaults, likely 
not what you want 
•  One exception: if VGRID grids are used exclusively, SUGGAR++ will 

use BC’s from VGRID’s mapbc file, which FUN3D will also require, 
so you will always have consistent BC’s. 
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Building Up A SUGGAR++ Input File (8/9) 
•  SUGGAR++ needs BC info for each component grid 
•   <boundary_condition> is a child of <boundary_surface> which is 

a child of  <volume_grid> 
•  Examples (syntax for each grid type a little different) 

–  AFLR grid 
    <boundary_surface find="yes" name="Surf=2”>         surface corresponds to  

        <boundary_condition type=”overset”/>               2nd patch in grid file 

       </boundary_surface>                    

–  FV grid 
      <boundary_surface find="yes" name="airfoil_surface"> must be SAME name that  

        <boundary_condition type="solid"/>                 is set in grid file 

      </boundary_surface> 

–  VGRID grid (shown completeness – generally don’t need) 
       <boundary_surface find="yes" name="Surf=3:bc=4”>    need surface/patch no. 

         <boundary_condition type="solid”/>                AND bc type 

       </boundary_surface> 
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Building Up A SUGGAR++ Input File (9/9) 
•  Principal options for <boundary_condition type= > 
-  “overlap”   
-  “non-overlap” 
-  “solid” 
-  “non-solid” 
-  “symmetry” 
-  “farfield”  
-  “freestream”   
-  “periodic” 
-  “axis” 

•  2D Cases 
–  Add as child of <global> 
   <symmetry_plane axis="Y" both_directions="yes"/>    
   <ignore_direction dir="Y"/> 
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Running SUGGAR++: Static / T=0  (1/3) 
•  Ralph recommends creating a “Grids” subdirectory and an “Input” 

subdirectory for each case 
–   I never do this however 
–  By default SUGGAR will look to read Input/Input.xml, so if you don’t 

have this you simply have to explicitly give the input file name 
•  You will want to redirect stdout and stderr (stdout has LOTS of output); 

below, file name Input.xml_0 is explicitly given 
–  c-shell 
  (./suggar++ Input.xml_0 > suggar++.output) > & suggar++.error 

–  bourne-shell 
   ./suggar++ Input.xml_0 1> suggar++.output 2> suggar++.error 

–  Simpler trick: ./suggar++ -reopen Input.xml_0 
•  stdout and stderr automatically go to out.stdout++ and 
out.stderr++ 
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Running SUGGAR++: Static / T=0  (2/3) 
•  Principal output: DCI and composite grid files specified in the XML file  
•  A concise summary of SUGGAR++ info is written to summary.log 

start time: Wed Jul  7 18:49:17 2010 
host: i16n1 
last git commit: 
command line: ./suggar++ Input.xml_0 
number of processors: 1 
number of threads: 1 
total number of out: 9657 
total number of fringes: 166124 
total number of min fringes: 145265 
total number of orphans: 199 
number of orphans due to poor quality donors: 199 
wall clock to perform assembly (seconds): 4.98748 
memory used (MB): 1018.83 
max interpolation deviation: 7.32747e-15 
fringe donor quality: 0.904761 
min fringe donor quality: 1 
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Running SUGGAR++: Static / T=0  (3/3) 
•  SUGGAR++ can use multiple threads 

–  Via command line –n_threads N (for N threads) 
–  Via input element <threads n=“N”/> 
–  Never found this particularly worthwhile (YMMV) 

•  SUGGAR++ can be run in parallel 
–  So far scaling achieved has been fairly poor - nowhere near linear, 

even for small (~8) processor counts 
–  Requires a separate partitioning step, which is at odds with current 

FUN3D parallel-processing paradigm; “optimum” SUGGAR++ 
partitioning bears no resemblance to optimal flow solver partitioning 

–  For these reasons, there has been minimal incentive to utilize the 
parallel capability for SUGGAR++ processing 

–  Hopefully SUGGAR++ parallel scaling will improve in the future 
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Running SUGGAR++ : Moving Grid (1/3) 
•  For FUN3D applications involving moving grids, SUGGAR++ must be 

run at least one time, to create the composite mesh and initial (T=0) 
DCI file 
–  FUN3D can call SUGGAR++ routines to compute the DCI data for 

each time step after T=0, “on the fly” 
•  Works for the most general case involving deforming bodies/grids 

or where motion is not known a priori (6DOF/aeroelastic) 
•  Creates a serial bottleneck in FUN3D execution, but is the easiest 

option to use 
•  More details in “Overset-Grid Simulations” Session 

•  For rigid grids with prescribed motion can run SUGGAR++ with a 
“motion file”  
–  Can be done “embarrassingly parallel” – simultaneous runs with 

different motion files 
–  Potentially can use SUGGAR++ in parallel mode as well 
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Running SUGGAR++ : Moving Grid (2/3) 
•  To run SUGGAR++ with a motion file called (e.g.) “motion.xml”: 

–  (./suggar++ Input.xml_0 -play_motion motion.xml > 
suggar++.output) > & suggar++.error 
•  Input.xml_0 is the same xml file used to create the composite 

grid and static / T=0 DCI file 
•  Motion file: 

–  Each time step is contained in a  complete <global> element 
–  Typical motion file will have multiple time steps 
–  Output specification of DCI file for the time step should be placed 

before and <body> specifications 
–  Up to the user to make sure the specified motion is the same as that 

which will later be applied by FUN3D during execution 
–  Should include one “motion” step with no motion if you want to 

generate the static / T=0 dci file in the same execution of SUGGAR++ 

FUN3D Training Workshop 
March 24-25, 2014 27 



http://fun3d.larc.nasa.gov 

Running SUGGAR++ : Moving Grid (3/3) 
•  Simple example of motion file with 2 time steps: T= 0 and T=deltaT 

<global> 
  <output> 
    <!–-- This is to generate the T=0 dci file    note: no number after [project] name - 
    <domain_connectivity style="ascii_gen_drt_pairs" filename="./wingstore.dci"/> 
  </output> 
  <body name="wingstore"> 
    <body name="wing"> 
    </body> 
    <body name="store"> 
      <dynamic> 
      <transform> 
        <translate axis="z" value="   0.000000000000E-00"/> 
      </transform> 
      </dynamic> 
    </body> 
  </body> 
</global> 
 
<global> 
  <output> 
    <!–-- This is to generate the T=delta_t dci file (timestep1) - 
    <domain_connectivity style="ascii_gen_drt_pairs" filename="./wingstore1.dci"/> 
  </output> 
  <body name="wingstore"> 
    <body name="wing"> 
    </body> 
    <body name="store"> 
      <dynamic> 
      <transform> 
        <translate axis="z" value="  -2.120800000000E-01"/> 
      </transform> 
      </dynamic> 
    </body> 
  </body> 
</global> 
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GVIZ 
•  Ralph has a “home-brew” interactive visualizer for looking at the overset 

grid assembly, called GVIZ 
–  Allows visualization of the meshes, hole points, fringe points, etc. 
–  Can be useful for debugging 
–  I don’t have enough skill with GVIZ to even begin to explain how to 

use it 
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Troubleshooting 
•  Lots of orphans could mean: 

–  Improper BC’s 
–  Non watertight geometry (default direct hole cutting requires 

watertight surfaces) – likely if virtually all points end up as hole 
points 
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List of Key Input/Output Files 
•  Input 

–  Input/Input.xml (default; any name OK if explicitly specified) 
–  Motion file (any name OK, used with -play_motion) 
–  Component grids (name and grid format vary; for FUN3D: VGRID, 

AFLR3, Fieldview formats) 
•  Output 

–  Composite grid; name and grid format vary 
–  filename.dci (filename set in XML file)  
–  summary.log  concise summary by point type (out, fringe, orphan…) 
–  SUGGAR++_motion.log (if -play_motion ) echo of motion file 
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